FreeMat

High-performance continuous filament mat without chemical binders, ensuring superior composite strength, efficient resin flow, and a more sustainable production process
kelteks FreeMat transforms composite manufacturing through advanced mechanical bonding technology, creating a continuous filament mat from E-CR glass fibers without chemical binders.

This construction ensures exceptional resin flow, faster impregnation, and higher glass content in laminates. The result: stronger composites with reduced resin consumption and zero harmful emissions during processing. Flexible yet strong mat conforms perfectly to complex molds, delivering smooth, high-quality finished products across multiple industries.

An ideal solution for Pultrusion, RTM, and Vacuum Infusion technologies, Kelteks FreeMat enhances efficiency and performance in advanced composite manufacturing.

Experience the future of composite reinforcement - request your kelteks FreeMat sample today. Our technical team is available to discuss how kelteks FreeMat can transform your composite manufacturing process.

Product Features

Advantages
  • Enhanced mechanical strength from 100% continuous glass fiber structure
  • Better bonding & reduced print-through – Enhances adhesion & surface quality
  • Truly eco-friendly with zero binders and no harmful processing emissions
  • Superior resin penetration reducing material usage and processing time
  • Perfect conformability to complex shapes without fiber breakage
  • Exceptional durability in aggressive chemical environments
  • Universal compatibility with polyester, vinyl ester, and epoxy resins

 

Zero binders and no harmful processing emissions


Sustainable Manufacturing Revolution

kelteks FreeMat's binder-free technology eliminates chemical adhesives entirely, creating a cleaner workplace and manufacturing process. The pure glass composition maximizes adhesion and compatibility with all standard resin systems.

Optimize Resin Performance
The open structure of continuous fibers dramatically improves resin penetration, ensuring complete and uniform wet-out. This reduces overall resin consumption by up to 20%, lowers final component weight, and accelerates production cycles.

Structural Superiority
With 100% glass fiber construction, kelteks FreeMat delivers exceptional tensile and flexural strength. Continuous glass strands enhance stiffness and impact resistance, substantially extending composite structure lifespan.

Perfect Form Adaptation
The flexible mat conforms effortlessly to complex geometries without wrinkling or fiber breakage. The stable fiber structure maintains integrity during resin infusion, eliminating common defects in finished components.

Enviriomental Resilience
Composites reinforced with kelteks FreeMat exhibit outstanding longevity even in extremely challenging conditions, with resistance to moisture, chemicals, and corrosion that significantly outperforms conventional reinforcements.

reinforcements for the future generations

Excellent Bonding
In House Testing
High Tensile Strength
Recyclable
Long Life Span
Corrosion Free

Product Applications

Compatible with Pultrusion, Resin Transfer Molding (RTM), and Vacuum Infusion, FreeMat enhances strength, durability, and processing efficiency across key industries.

Construction & Infrastructure

Reinforces pultruded profiles, sandwich panels, and structural elements in bridges, tunnels, facades, and flooring systems, ensuring longevity and environmental resistance.

Automotive & Transportation

Improves pultruded and RTM-produced body panels and structural components, delivering high strength-to-weight performance for vehicle efficiency.

Wind Energy

Optimized for pultruded reinforcements in turbine blades and nacelles, achieving 55% glass fraction for maximum strength with minimal weight.

Chemical Processing

Extends the lifespan of FRP pipes, tanks, and industrial components, with pultruded and RTM elements providing superior resistance to chemicals and corrosion.

1/3

We are here for you!
Send us your request and we will respond as soon as possible!

Invalid Input
Invalid Input
Invalid Input
Invalid Input. Please enter only numbers like this: 00385911234567
Invalid Input
Invalid Input
Invalid Input
Invalid Input

Contact Status

Invalid Input
Invalid Input

Product type

Invalid Input

Technology

Invalid Input
Invalid Input

Raw materials

Invalid Input
Invalid Input

Construction applications

Invalid Input
Invalid Input

Composite applications

Invalid Input
Invalid Input

Additional information

Invalid Input

Additional notes

Invalid Input

File upload

Invalid Input
Invalid Input

    frequently asked questions

    Your top inquiries, addressed
    • Performance Enhancement
    • Handling and Logistics
    • Compliance and Compatibility
    • Application and Installation
    • Durability and Resistance
    • Sustainability and Environmental Impact
    • Is solidian GRID suitable for replacing corroded steel reinforcement?
    • How does solidian GRID contribute to system durability when used with mortars?
    • Can solidian GRID conform to curved surfaces during installation?
    • How does the weight of solidian GRID affect transportation and installation?
    • Is there an Environmental Product Declaration available for solidian GRID and solidian REBAR?
    • Has solidian GRID received official building approvals?
    • With which types of binders is solidian GRID compatible?
    • Is solidian GRID approved for use in standard concrete applications?
    • What is the minimum thickness required for concrete layers using solidian GRID?
    • Can solidian GRID be used to reinforce existing concrete structures?
    • What is the expected lifespan of solidian GRID in wastewater applications?
    • How does solidian GRID perform in acidic environments?
    • How does solidian GRID contribute to sustainable construction?

    Yes, in cases where steel reinforcement has corroded, solidian GRID can serve as a substitute for structural reinforcement. The existing corroded steel can remain in place and be covered with a new layer of carbon-reinforced mortar, restoring structural integrity.

    When combined with high-quality mortars, solidian GRID significantly enhances the overall durability of the system, providing a robust solution for demanding environments.

    Yes, solidian GRID strikes a balance between stiffness and flexibility, allowing it to be applied to curved surfaces with diameters greater than 800mm.

    The lightweight nature of solidian GRID facilitates easy transportation, even through sewage tunnels, and simplifies the installation process, reducing labor and equipment requirements.

    Yes, a certified Environmental Product Declaration (EPD) is available for both solidian GRID and solidian REBAR. The EPD provides transparent and verified information about the environmental impact of these products throughout their life cycle, supporting sustainability assessments in construction projects.

     

    Yes, solidian GRID has obtained the General Building Approval (abZ) from the German Institute for Building Technology (DIBt). This approval authorizes its use as carbon reinforcement grids in construction, ensuring compliance with national building standards.

    solidian GRID is versatile and works with a range of binders, including Portland Cement, Calcium Aluminate Cements, and Geopolymer Cements.

    solidian GRID holds German Approval as reinforcement for EN 206 concretes, supporting its compatibility with various mortar systems, including those adhering to DIN 19573.

    Concrete layers reinforced with solidian GRID can be as thin as 20mm, as no additional concrete cover is needed to protect the reinforcement from corrosion.

    Yes, solidian GRID can be applied as an additional layer over existing steel-reinforced concrete. When combined with solidian ANTICRACK, it offers enhanced crack-limiting properties, providing extra protection to the underlying steel reinforcement.

    Classified under XWW4, solidian GRID ensures long-term performance for over 50 years, making it a durable choice for long-term infrastructure projects.

    solidian GRID is fully resistant to severe acidic conditions, including environments with pH levels as low as 0. It has successfully passed tests in accordance with DIN 19573 standards for pH 0 and pH 1.

    solidian GRID enables the design of thinner concrete layers (greater than 20mm) without requiring additional concrete cover for reinforcement protection. This reduction in material usage leads to lower resource consumption and a diminished environmental footprint, supporting more sustainable construction practices.

    Additional information:

    • Resource efficiency: By minimizing the need for extra concrete cover, solidian GRID conserves materials such as cement and aggregates, contributing to resource efficiency.
    • Environmental Product Declarations (EPDs): solidian provides transparent data on the environmental impact of their products through EPDs, facilitating informed decision-making for sustainable building projects.
      Solidian Kelteks
    • Reduced CO₂ emissions: The use of solidian GRID in construction can lead to significant reductions in CO₂ emissions due to decreased material usage and enhanced durability, which extends the lifespan of structures and reduces the need for repairs.